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Table 1. Special relationships between dispersion of specimen crystal and dispersion of monochromator 

0 c Aw A20 
arctan (0.5 tan 0M) -½k tan 0M 0 

arctan (0.6 tan 0~) -2k  tan 0M ~k tan 0~ 
OM 0 k tan OM 

Comments 

All wavelengths enter the detector in parallel but are not diffracted simul- 
taneously 
Minimum wavelength dispersion in Ato, A20 space 
All wavelengths enter the detector simultaneously but as a divergent beam 

This corresponds to the 'focusing' condition (Arndt 
& Willis, 1966) where all wavelengths, A2 to A1, diffract 
simultaneously. Note, however, that while the disper- 
sion is zero in respect of  Ato it is not zero in respect 
of A20. When one goes beyond sEsx, the sequence of 
intersection with the reflecting circle inverts to h t2, 
i.e. first tx then t:. The special relationships are sum- 
marized in Table 1. 

I am grateful to Drs S. L. Mair and A. W. Stevenson 
for critical and helpful comments on the manuscript. 

Also to Dr B. T. M. Willis for very considerable 
contributions to textual clarification. 
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Abstract 2~p, 2~q, 2~t¢ = ~ f2 

A multisolution procedure, based on the probabilistic 
formulas obtained by Giacovazzo [Acta Cryst. (1983). 
A39, 685-692] is described, which aims at recovering 
the complete crystal structure from a partial one. A 
new weighted tangent formula develops starting 
phases: the correct solution among others is found 
by means of two revised figures of merit. The pro- 
cedure is successfully applied to some practical cases. 

Symbols and abbreviations 

Throughout the paper a number of symbols will find 
frequent application. For most of them the reader is 
referred to the first paper of this series (Giacovazzo, 
1983), from now on referred to as paper I. Other 
symbols not used in I are listed below. 

0108-7673/85/060605-09501.50 

,vo, ~o, ,vO = )-.o f2  

F°,~ 

EL 

E~,,h 

The summation is extended to 
the p, q, N atoms. Atomic ther- 
mal factors are included. 
The summation is extended to 
the p, q, N atoms. Atomic ther- 
mal factors are excluded. 
Structure factor for the partial 
structure. Atomic thermal fac- 
tors are not considered. 
Ifhl 2 on an arbitrary scale. 
Pseudo-normalized structure 
factor with vectorial index b 
defined by EL = Fh/~, 1/2 q • 

Pseudo-normalized structure 
factor of the partial structure 
with p atoms in the unit cell, 
defined by E[.h = Fp,h/~, 1/2 q • 
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606 FROM A PARTIAL TO THE COMPLETE CRYSTAL STRUCTURE. II 

R~,, Rp, h Moduli of Eh and Ep,h respec- 
tively. 

Dl(x)=Ii(x)/Io(x) Ii(x) is the modified Bessel 
function of order i. 

Gh 2R~R'p,h. 
cs Centrosymmetric. 
ncs Non-centrosymmetric. 

Other locally used symbols are defined in the text. 

1. The probabilistic background 
Ir) paper I a probabilistic theory is described aimed 
at recovering the full structure from a partial one. A 
group of p atoms was assumed to be correctly posi- 
tioned while the other q = N - p  atomic positions 
define the primitive random variables. According to 
Main (1976) and Heinerman (1977), the normalized 
structure factor was defined by 

= F ' / / I F  ' 2\1/2 Eh h/\l h /p.r.v., 

where <lFhl%~v denotes the average of IFhl 2, the 
variable being the primitive random variables. Then 
[see (I.2)] 

E.  = FdEIF,,.,,I = + Z~] '/~. 

By analogy it was assumed in I that 

E , . ,  = F , . , l [ I F , . , I  = + ,,ff..,q ] 1/2 

Eq.,,= F j [ I F p . . I  = + .V,q] '/=. 

It was explicitly noted that Up, h is not a variable and 
[Ep, hl--< 1 always, while Eq, h is a variable but it is not 
a normalized structure factor. Indeed, ([Eq, hl2) < -- 1. 

A basic result of I was (I.B1), from which (I.23) 
and (I.24) were derived, estimating Ch in P1 and P1 
respectively via one or more triplet terms. The use of 
these equations is rather difficult because they require, 
for each triplet, the calculation of the coefficients 
b(h), b(k), b (h+k) ,  c. A remarkable simplification 
in (I.B1) is obtained by replacing E by the pseudo- 
normalized structure factor E'. If k is changed into 
- k  (to be consistent with standard notation) and E 
is replaced by E'  then (I.B1) reduces to (A1). Sub- 
sequent calculations lead to new expressions for 
(I.23) and (I.24). In particular, the conditional proba- 
bility that the sign of Eh is plus in cs space groups 
is given by 

P+( E~) =O.5 +O.5 tanh { R~[ E'p,h 

-I-q-U2~ (E~,- E'p,k)(Eh-k- EP, h-k)l }" 
k 

For the ncs case we obtain 

P ( ~ h ' ' ' )  = M [~h ;  On, a . ]  

[27rI0(a)] -1 exp [a  cos (~Ph- 0,)], 

(1) 

(2) 

where 

o~, = o~2+ c~ 2 , (3) 

,{, a~ = 2Rh Rp, h COS q~p,h 

+ q-1/2~, [R~,R~_k cos (~k + ~h-k) 
k 

- Rp, kRh-k COS (~p,k + ~h-k) 

- R ~ , R ; . , _ k  cos (~k + ~p.,-k) 

+ R ;.k R ;,..-k COS (~,,.k + ~%.,,-,.) ] } 

' ) ] }  (4) t Ep, h_k , X ( E h - k - -  

a.~ = 2R~{ R~,,h sin ~p,h 

+ q-'/2E [R~,Rh_k sin (~k + ~h-k) 
k 

- R'p, kR~-k sin (~p,k + ~0h-k) 

- -  R~,R'p,b-k sin (~ok+ ~p,h-k) 

+ Rp, kRp, h_ k sin (~0p, k-~ ~0p, h_k)]} 

=2R~'{J~[ Ep'h+q-'/2y'(E~'-Ep'k)k 

tan 0, = a I / a  '1. (6) 

In (4) and (5) ~ and ~ stand for 'real part of '  and 
'imaginary part of '  respectively. 

A more complete insight into the approach may be 
obtained by analysing the formulas in the light of one 
of the most used procedures aimed-at recovering the 
complete structure from a partial one, the DIRDIF 
method by Prick, Beurskens & Gould (1983). 
Analogies and differences may be schematically 
described in the following way: 

(1) DIRDIF assumes that the structure factor of 
the unknown part of the structure may be estimated 
by a (sometimes rough) difference of moduli: IFql = 
II El-  I Fpll. A phase is associated with each (I F I -  I Fpl), 
which is refined cycle by cycle. In our procedure we 
do not need to estimate I Fql: in fact the formulas 
depend on both F and Fp. In particular, the phase 
is refined cycle by cycle while ~p is a constant. 

(2) DIRDIF procedure aims to estimate ~q,h 
whose reliability is given by the parameter (function 
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of moduli only) 

Kh,k = 2 N-' /2I(IE~I-  I Ep,~l)(I Ekl- I Ep, d) 

x (IE~-d- IE~,~-d). 
Our method estimates ~0h whose reliability parameter 
is 

21Ehl E~,b + q-1/2( E~,-  E~,0(Eh_k- E~,h-0, 

which depends both on the moduli IE~,I, IE~.hl, IE~,I, 
IE~,d, IE~,-d, IE~,h-d and on the phases ¢Pp.h, ~0k, ~0~,k, 
~0~-k, ~%,h--k. Using ~h instead of ~%.h offers a further 
advantage: at the end of the phasing process the 
inspection of the E map immediately indicates if 
prior information has been lost during phase 
extension and refinement. 

(3) When several triplets are available the phase 
~q.h is estimated in D I R D I F  by the parameter 

o~ = Kh,k COS ( q~q,k + ~%,h-O 

+ { ~ Kh ,~, sin ( ~o~.~ + ~0~.h-,) }2. 

During phase refinement the values ~a vary but 
moduli Kh., remain fixed. 

According to (3) the reliability parameter of ~o, 
depends on 

During the phase refinement, the phased difference 
terms (E~-  Epk) and (Eh_~- Ev, h-~) change both their 
moduli and their phases. 

Further analogies and differences will appear when 
the weighted tangent procedure and the new figures 
of merit are described. 

The new forms of the distributions allow the 
immediate understanding of their properties. We 
note: 

(a) the coefficients b(h), b(k), b (h -k )  do not 
appear in the new expressions, which are now easily 
applicable. 

(b) the triplet contribution is of order q-~/2 [it is 
replaced by (tr3/tr3/2)q if atoms are not equal]. It is 
worthwhile observing that q is just the number of 
independent random variables in our problem [by 
analogy, the triplet contribution in Cochran's (1955) 
relationship is of order N -~/2, and N is there the 
number of independent random variables]. 

(c) E'  and E~ are not normalized structure factors: 
indeed (the averages are assumed to be made over h) 

(IE'I2)= 1 + Z,,, /~, (IE~I2)=.~,,/Z,,, 
so that (IE'I 2) is always larger than unity, while (lEVI 2) 
is larger or smaller than unity according to whether 
2~ is larger or smaller than ~q. The larger the a priori 
information, the smaller (IE'-E~I 2) is. 

(d) equation (2) reduces to Sim's (1959) formula 
if triplet contribution is not taken into account. 

(e) the best estimate for ~0h, i.e. Oh, is the phase of 
the complex vector 

! - - 1 / 2  t ! ! Ev,,+ q .,~k(Ek--Ev.k)(E~,_k--Ev.h_k). (7) 

The larger its modulus a is, the larger the expected 
accuracy of the estimation. According to (7), the 
vectorial differences (E ~, - E~.k) and (E h-k - E~.h_k) 
do influence the value of 0a [not only the scalar 
differences (R~,- Rp.k) and (R~-k- Rp.h-k)]. 

(f) if p - 0, then q - N, Ev ~ 0 and (1) and (2) 
reduce to the classical Cochran-Woolfson's (1955) 
and Karle & Karle's (1966) relationships respectively. 

(g) the larger is p, the less important in the average 
is the triplet contribution compared with Sim's contri- 
bution. In particular, because of point (c), the triplet 
contribution vanishes when q -  0. Then R~ and R~,h 
are both infinite and (2) approximates the Dirac 8 
function 8(~h-- ~0p, h). 

(h) From (2)-(6) the following probabilistic rela- 
tion is suggested: 

E~,=Etl,.h+q-1/2E (E~,-E~.k)(E~l-k-E~.b_k), (8) 
k 

which may be considered as a generalized Sayre's 
(1952) equation emphasizing the fact that part of the 
structure is known. When q = 0 (8) reduces to the 
trivial identity E¢, = E~.h = oo. When q = N then E~ = 
0 and (8) reduces to the classical Sayre's equation. 
When q # 0, N the prior information introduces new 
algebraic or probabilistic constraints so as to recentre 
EL around E~.h. Algebraic reasons supporting (8) and 
the new generalized Sayre's equation in terms of F 
are given in Appendix B. 

In § 2 a practical procedure is described aiming at 
exploiting in an effective way (2)-(6). In § 3 practical 
applications are described. 

2. The automatic procedure 

The SIR program (Cascarano, Giacovazzo, Polidori, 
Spagna & Viterbo, 1982) has been modified in order 
to take advantage of the available apriori information. 
The basic steps are described below. 

2.1. Normalization and pseudo-normalization 

If all the atoms of the structure are supposed to 
have the same isotropic temperature factor B, then 

(Ih)she,, K{(IF°hl 2 o = + ~q)sheH} exp (-2Bs2), (9) 

where s=s inO/A .  In (9) 'shell' denotes any 
reciprocal-space region chosen for the Wilson method 
and K is the scale factor. From (9) the Wilson pl0t 
is obtained via 

log {(&)shJ(lF°,bl 2 + 2:0),h~,,} = log K - 2 n s  2, (10) 

giving the K and B values. 0 



608 FROM A PARTIAL TO THE COMPLETE CRYSTAL STRUCTURE. II 

Often, estimates of the temperature factors of the 
atoms in the partial structure are available. If the 
observed amplitudes are on the absolute scale (for 
example, via a previous Wilson plot), we could write 

(i Fhl=),,.,o,, = (i F,,,hl~- + ~o exp (--2nqs2))she,,, 
from which 

log {(IFhl 2 2 o - IFp,~l )~o./(-~ ~)~.o.} = - 2 B : :  (11) 

is obtained, giving the average temperature factor Bq 
of the unknown part of the structure. The E values 
are then obtained by means of 

IEhl ~-- Ih/{KEIF,,,d2+2,q]} (12) 

and the E'  values by 

lEVI 2= Ih/(K~). (13a) 

Accordingly, 

I E~,,,,I ~= I,,d(ICY.~). (13b) 

In (12), (13a) and (13b), K = 1 if (11) is used. 
A further method for obtaining E and E'  is that 

described by Gould, van den Hark & Beurskens 
(1975), which minimizes the quantity 

~ (G-Gp-Gq)  2, (14) 

where 

G =  I / Z  ° ,  

Gp = K(IF°l 2 exp (-2Bps2)/~,°), 

Gq = K(Z '° exp (-2Bqs2)/E°). 
Equation (14) is particularly useful when: (a) Bp is 
expected to be markedly different from Bq (i.e. for p 
heavy atoms); (b) all the p atoms are expected to 
have a nearly equal temperature factor. 

On the other hand, (11) allows p different tem- 
perature factors for the p atoms but uses the scale 
factor provided by a previous Wilson plot under 
different conditions (i.e. an overall isotropic tem- 
perature factor). Such an assumption proved not 
critical in our experimental tests. Therefore, we imple- 
mented in the SIR package the method using (11). 

2.2. Starting estimates of the phases 

If %,,h is known then the distribution of ~Ph is the 
Von Mises distribution (Sim, 1959) 

M[~Ph; %,h, Gh], where Gu=2R~R'p,h. (15) 

Because of the prior information the complete set 
{R', R~,, q~p} is known. It is then possible to integrate 
(A1) with respect to ~02 and ~P3 and calculate the most 
probable value 0h of ~Ph given {R', R~, %}. We obtain 

P(q~h {R~, g~,, g~-k, q~p,k, q~p,h-k}) 
= M[¢h; 0h, Xh], (16) 

where 

tan 0h = • Pj sin 0j/E Pj cos Oj = Ah/Bh, 
J J 

x h =  {a~+ B~} '/~, 
PI = Gh, 

01 = ~0p, h, 
" ) r ~ - - l / 2 D t D t  i~! 

j = z,t, 1 .IXhZXp, k j iXp ,  h - k  j , 

Oj = ~0p,kj + ~p,h-kj. 
j ~ l  

(17) 

(18) 

As we see, the knowledge of the complete set {%} 
generates, in addition to Sim's contribution, a non- 
negligible contribution of order q-l~2 arising from 
triplets of type (~oh- ~0p.k- ~0p,h-k). 

The above procedure deals with ~0k and ~0h-k as 
they were randomly distributed around 0 and 27r, in 
spite of the fact that, according to Sim, %,k and %,h-k 
are the expected values of ~0k and ~0h-k respectively. 
This suggests that ~0h may be estimated by introducing 
into (2) the assumptions 

~0 k ~ (~0p,k, 

Then (2) reduces to 

(~Oh-k ~--- ~p,h-k" (19) 

P(~oh{R',R'p,~%,~o----~p})=M[~h; 0h,/3h], (20) 

where 

/31 = 2R~,{ Rp, h c o s  ~Ov, h 

+ q-1/2 E (R~,- Rp, k)(R;-k-- Rp, h-k) 
k 

X COS ( ~p,k "lt- ~)p,h-k) } 

/32 = 2R~,{ Rp, h sin ~0p, h 

+ q-,/2 ~, (R~,_ R'p.k)(R~,-k-- R~.h-k) 
k 

x sin ( ~p,k @ (~p,h-k) } 

tan 0h =/32//31. 

However, (19) is allowed only for a limited number 
of phases. In order to avoid the numerous unreliable 
assumptions (19) destroying the information pro- 
vided by the subset of the more reliable ones, the Sim 
weight is associated with each relation (19). Then (2) 
reduces to 

M[~Oh; 0n, ah], (21) 



M. CAMALLI, C. GIACOVAZZO AND R. SPAGNA 609 

where 

a 2 =  a 2+ a 2 (22) 

al--'-- Gh COS ~Op, h "3 I- q - - 1 / 2 ~  Ok COS (~Op, k -1- ~Op, h - k )  
k 

a2 = Gh sin ~Op, h"~- q--1/2  ~ Q k  sin (%,,k+ ~Op, h--k) 
k 

Qk = Q1DI( Gk)D,( Gh-k)-  Q2D~( Oh-k) 

- Q3DI( Gk) -t- Q4 

2RhRkRh-k  Q2 = ' ' ' = 2RhRp, kRh-k Q 1 t ' t 

Q3 -- 2RhRkRp, h-k Q4 -'- 2RhRp, kRp, h-k 

tan Oh = tx2/al. (23) 

The Oh values provided by (23) and characterized by 
large values of ah are expected to estimate the true 
Ch value more accurately than Sim's estimates. Thus 
they may act as a starting set for subsequent phase 
expansions. 

On the other hand, phases (0k + 0h-k) arising from 
the partial structure are mutually inconsistent when 
Oh is characterized by a small Og h. Then O h is expected 
to differ markedly from the true value ~h. 

The above considerations suggest that: 
(a) the original- and enantiomorph-defining 

phases should be chosen among the ~h values with 
largest ah; 

(b) symbolic phases, varying according to the 
magic integer method (Main, 1978) may be chosen 
among the Oh phases characterized by the largest 
inconsistency of the Ok + 0h-k pairs. In this way infor- 
mation additional to that provided by partial structure 
is used in view of: (1) enlarging the starting set; (2) 
making easier the phase refinement procedure in 
difficult cases (e.g. when the partial structure is cen- 
trosymmetric and the complete structure is not, or 
when the partial structure suffers pseudotranslational 
symmetry etc.). 

2.3. The starting set 

The R' and Rp values are obtained according to 
(13a) and (13b). Then the values ah given by (22) 
are calculated for each h and arranged in decreasing 
order of a. The NUMK 0 values given by (23) and 
characterized by a -  10 are assumed to be reliable 
estimates of the true phases ~ and constitute the 
starting set. In order to avoid loss of the origin they 
are not allowed to vary during the phasing procedure 
except in the last two cycles. On the other hand, the 
condition N U M K - 1 0 0  is introduced in order to 
release too heavy restrictions in the refinement 
process. 

If the origin and the enantiomorph are not fixed 
by the N U M K  reflexions then suitable additional 
phases with large a values are introduced in the 
starting set. Specifically, the enantiomorph is assumed 

to be fixed if at least one triplet is found among the 
NUMK reflexions whose (0h-- Ok-- 0h-k) value differs 
by more than 30 ° from 0 or 7r. The magic integer 
symbolic phases to be introduced in the starting set 
(there are four in default conditions) are chosen 
among those having the largest values of (see Prick 
et al., 1983, for a related procedure) 

where 

Ao~ h = (O~h)rnax -- Ogh, 

(aU)max = Gh + q-1/2 ~, [Qkl" 
k 

au = (aU)max only when in (22) %,kj + ~p,h--k~ = 
%,k, + ~Pp, h--k, ---- %,h, whatever i and j may be. 

The criterion of maximizing Aa instead of minimiz- 
ing a is suggested by the following considerations. 
The reflexions with the smallest values of a are likely 
to have true phases markedly different from 0. 
However, even if this information is very precious it 
is of limited usefulness in the phasing procedure 
because these reflexions are not likely to be closely 
connected with the phases to be determined. It is 
therefore preferable to choose as variable phases 
those having the largest values of Aa because they 
are likely to have a sufficiently large number of contri- 
butions and relatively unreliable estimates. 

2.4. The weighted tangent formula 

In order to ensure that poorly determined phases 
have little effect on the determination of other phases 
the weighted tangent formula (24) has been formu- 
lated: 

tan Oh "" " (24) 0~2/Og i ,  

where 

0t~= G1 cos ~pp, h-I- q-I/2~, {QlWkWh_ k COS (¢Pk't- ~h-k) 
k 

-- Q2Wh_k C0S (¢Pp, k'q- ~0h-k) 

- Q3 Wk COS (~pk + Cp, h--k) 

-I- Q4 cos (q~p,k-l- q~p,h-k)} (25) 

a~ = Ga sin q~p,h + q-a~2 ~, { Q1Wk Wh_k sin ( ~0 k "~ ~0h--k) 
k 

- . . . }  (26) 

and 

C~h= a ~ 2 + ~  2 . 

A phase indication is accepted and incorporated in 
the known set if a 2 > CUT, where CUT is a threshold 
varying cycle by cycle. At the beginning CUT= 
CUTIN, where CUTIN is the minimum a 2 value 
associated by (22) with the starting set. Cycle by cycle 
CUT is reduced by the factor 0-65. At the end of each 
cycle the average (a 2) for the accepted phases is 
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calculated and used in the succeeding cycle to obtain 
the weight 

w,,= ( a2/ (a  2)),/4 (27) 

Table 1. Crystal data for test structures 

w cannot be larger than unity and smaller than 0.15. 
Compound PROL RIFOL NAFTO 

The above scheme has been introduced because of Chemical formula C26H4oN407 C39H49NO13 C42HsoClNO9.2H20 
the large a values usually involved in the process N~ 37 53 55 
from the first cycles. While usual weighting schemes z 2 2 4 

Space group P21 P21 P2,212, 
could lead to an unweighted situation, with w = 1 for a<A) 12.768 11.860 12.565 
any reflexions, in our scheme w does not depend on b(A) 10.924 9.140 14.410 

c(A) 10-064 20.423 24.239 a but on a ratio whose denominator changes cycle -(9 90 90 90 
by cycle. The effect is that the weights of the phases /3(o) 95.70 90.72 90 
~tre more conveniently arranged in the range 0.15-1. ~(°) 90 90 90 

N, en 300 400 400 

2.5. The figures of merit 

The correct one among other solutions may be 
found by appropriate figures of merit. A revision of 
the traditional figures is needed according to the 
following considerations: 

(a) criteria based on the maximization of Y,h o~b 
usually are not convenient here. To show that, let us 
observe that ah is a maximum if the phase of the 
triplet contribution ~k Eq, kEq, h-k coincides with ~p.h. 
Since q-,/2 ~,k Eq, kEq,~-k is expected to converge (see 
Appendix B) to Eq, h, Y,h ah is then a maximum when, 
for every h, tpq, b-~ ~p,~, which cannot correspond to 
the true structure. 

(b) a residue criterion may be introduced accord- 
ing to the formula 

I ! 
R h c a l  c COS (Ph - -  Rp, h COS qgp, h ----- Sq-'/2(U) (28) 

Rhcalc sin q~h- Rp, h sin q~p,h=Sq-'/2(V), (29) 

where U and V are the summations of order q-,/2 
that appear in (25) and (26) respectively, and 

(u)= U/n, (v)= V/n. 

n is the number of contributions in U and V. 
The scaling factor S is found by adding the squares 

of (28) and (29): 

R , 2  • t2 t t hcalc "t'- Rp, h -2RhcalcRp, b cos ((Pb "- q~p,h) 

_~ S2q- ' ( (U)  2 + (V)2). 

Now we write (28) and (29) as 

Rhcal c cos tph = R~,,h COS q~p,h + Sq-'/2(U), 

R~c~o sin ¢~ = R~,h sin cp, h + Sq-1/2< V), 
from which R '2 hcalc may be obtained. The residue 

R' Rp = ~, IRh- ho~,~/Y~ R~, (30) 
h h 

is then used as a figure of merit. 
(c) the ~o criterion, which in the standard version 

may be written as 

Na.u. is the number of non-hydrogen atoms in the asymmetric unit. 
Nren is the number of independent reflexions (with largest values 
of R') introduced in the procedure. 

in our case becomes 

(d) standard figures of merit based on negative 
quartets and one-phase and two-phase semivariants 
can usefully be applied without modifications. Their 
power will certainly be magnified when formulas are 
available explicitly exploiting prior information on 
the partial structure. 

3. Applications 

All calculations were performed by the procedure 
described in § 2 using default executional parameters. 
The test structures are listed in Table 1: they are 
denoted by the code names PROL (Colapietro, De 
Santis, Nocilli, Palleschi & Spagna, 1985), RIFOL 
(Brufani et al., 1985), NAFTO (Keller-Shierlein et 
al., 1985). All these structures were M U L T A N  resis- 
tant and were solved by application of the SIR pack- 
age (Nunzi et al., 1984). PROL and RIFOL were 
chosen as examples of equal-atom structures, 
NAFTO is taken as an example of an organic 
molecule with one medium-heavy atom (chlorine) 
whose position in favourable circumstances may be 
found by a sharpened Patterson synthesis. Displays 
of the molecules of PROL, RIFOL and NAFTO are 
shown in Figs. 1, 2 and 3 respectively. Descriptions 
of the molecular fragments in known positions for 
the three structures are given in Table 2. Usual tech- 
niques of successive Fourier syntheses do not allow 
the recovery from the fragment of the complete crystal 
structure. 

Pseudo-normalized structure factors were calcu- 
lated according to (11) and (13) and starting estimates 
of the phases were obtained according to (21). The 
use of (21) may be appreciated by looking at Table 
3. The entries of the column 'overall' give the values 
in degrees of (1~1 , )=(1~  ° o -¢p,h]) and (IA~Ig= 
(Iq~ ° -  0°l> calculated over all the Nrea reflexions. 0h 
is seen to estimate q~h more accurately that q~p,h- 



M. CAMALLI, C. GIACOVAZZO AND R. SPAGNA 611 

Table 2. Desc@tion of the starting fragments for 
PROL, RIFOL and NAFTO 

er is the rat io ( n u m b e r  o f  a pr ior i  loca ted  e lec t rons ) / ( to ta l  numbe l  
o f  electrons) .  
R = [EllFo~J- I F=~olI]/[E I Fossil gives the d i sc repancy  index  calcu- 
la ted for  the  given f ragments .  

C o m p o u n d  Start ing f r a g m e n t  er R 

PROL O(3), N(1), C(2), C(3), 0.16 0.670 
C(4), C(5), C(6) 

RIFOL O(1), O(12), C(1), C(2), 0.11 0.668 
C(3), C(4), C(9), C(10) 

NAFTO C1 0.04 0"674 

However, the most important effect of (21) is that 
rettexions are ranked according to ab in (22) more 
conveniently than according to Gh in (15). In Table 
3 the values of <IA I1) and (IA I=) are shown for the 
first 50, first 100, last 100, last 50 reflexions ranked 
according to Gu and a~. It is seen that the origin and 
enantiomorph phases have to be chosen among the 
reflexions with the largest values of a. 

The introduction of variable phases in the starting 
set according to § 2.3 and the application of the 
weighted tangent formula described in § 2.4 lead to 
several possible solutions from which the correct one 
has to be selected. In this view we used the figures 
of merit (30) and (21). Their effectiveness dearly 
stands out in Table 4, where the Rp, ~0p and 

o o ~a~¢l) given for each solution for RIFOL. ([~Pt~- are 

/~(9) 
C(10) (x\C(8) /0(3) 

C(25) C(24} C(12)Xf_~C(13)N 

C(22)~ 0(5) .,~/(3) .~C(14) 

C(19)- 
Fig. 1. Schemat ic  d i sp lay  o f  the  P R O L  molecule .  

Table 3. The values ( Aq~ 1) = ( q~h- q~p,b ) and ([Aq~ 2) = 
( q~h- Oh ) calculated for PROL, RIFOL and NAFTO 

in various circumstances (see text) 

First  First Last  Last  
C o m p o u n d  Overal l  50 100 100 50 

PROL ( l~h)  43 21 24 64 72 
( [~1~35  20 20 55 71 

RIFOL ( 1 ~ h ) 4 3  21 20 77 91 
( Iae l#42 15 18 83 94 

NAFTO <1~h>48 25 34 65 70 
([~12)45 23 31 64 78 

Table 4. Serial number n, (A~pl) = ([~po - ~P~=d),° 
100Rp and d/o values for the various solutions obtained 

for RIFOL 

. (1~1> R, ~o~ n (1~1) R, ~o~ 
1 47 31 190 2 16 26 157 
3 48 31 189 4 16 25 157 
5 48 31 195 6 47 31 189 
7 48 31 192 8 49 31 195 
9 48 31 193 10 16 26 156 

11 16 26 157 12 16 25 157 
13 49 31 195 14 48 31 194 
15 46 31 187 16 15 26 157 
17 15 26 156 18 48 31 190 
19 49 32 195 20 48 31 196 
21 41 33 179 22 47 31 182 
23 47 31 187 24 49 32 202 
25 15 26 155 26 46 31 187 
27 47 31 175 28 48 31 194 
29 47 31 191 30 16 26 154 
31 16 26 155 32 48 31 191 
33 48 31 195 34 47 31 191 
35 45 31 182 36 15 26 156 
37 15 26 155 38 47 31 189 
39 48 31 195 40 48 31 195 

It is also seen that several good solutions are obtained 
in the 40, indicating that a reserve of power is still 
disposable. 

For PROL, RIFOL and NAFTO the most probable 
solution was chosen whose Fourier transform gave 
(see Figs. 1, 2, 3): 

(a) for PROL: all non-hydrogen atoms except 
0(6) and C(23); 

(b) for RIFOL: 33 additional atoms. The other 
ones [O(11), C(30), C(13), C(17), C(29), C(37), 
C(35), 0(8),  C(36), C(32), C(33), C(34)] were easily 

C(36) /C(32) 
\ 0(8) / 

XO(7 ) C(23y 0 t, O)XX xC(21) C~.O) 

/ \c(~) )ct17) 
/(28) / 

/~(2S) ?(2) /O(1) N(1) j , ~ O )  
c04) c(a) co) o 11 c(3o) 

0 (~,~'~C~ ~ ) C(4"~0(12) 
C(13) / 

Fig. 2. Schemat ic  d isp lay  o f  t h e - R I F O L  molecule .  

C(39) 
o(8) / 

~ c1331 

• Io(2) 

Fig. 3. Schemat i c  d i sp lay  o f  the N A F T O  molecule .  
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provided by standard techniques. 
(c) for NAFTO: a fragment of 20 additional atoms 

easily recognizable by a routine peak search program 
[C(22), C(23), C(24), C(25), C(40), 0(7),  C(27), 
C(271), C(28), C(29), C(30), C(31), C(311), 0(9),  
N(1), C(32), C(2), C(1), O(1), C(39)]. At this stage 
the discrepancy index was R = 0.51 and an observed 
Fourier synthesis did not give additional atoms. The 
21-atom fragment was used as prior information for 
a new cycle of our procedure and a new fragment of 
12 atoms was immediately recognized by the peak 
search program [C(26), C(4), C(5), C(6), C(7), C(8), 
C(9), C(10), C(11), 0(2),  O(3), C(33)]. Recovering 
the complete structure was then a trivial task. 

4. Conclusions 

The procedure described above may be considered 
as an image reconstruction process working in 
reciprocal space. Inded, prior information on the 
position of a structural fragment is transferred into 
the reciprocal space in order to obtain the Fp factors, 
which, together with diffraction intensities, are 
exploited for recovering the complete crystal struc- 
ture. The procedure has a probabilistic nature but 
agrees well with an algebraic modified form of Sayre's 
equation described in Appendix B. The method has 
been applied to cases in which recovering of the 
crystal structure is not trivial. In particular, fragments 
containing electron fractions of 0.16, 0.11 and 0.04 
(corresponding to relative scattering power of 0.18, 
0.15 and 0.11) proved to be sufficient input for the 
method. Since more solutions in the multisolution 
process contemporaneously contain additional struc- 
tural information we feel that the method may work 
also in more critical situations. 

APPENDIX A 

By introducing the change of variables R ~ R' and 
by assuming ~2 = ~k, q~3 = ~h-k, ~p2  = ~0p, k, ~p3  = ~0p, h - k ,  
(I.B1) becomes 

P(~I, ~P2, ~P3 R~, R'p,, Cp,, i =  1,2,3) 

-~L - l e x p  2 2R~Rp~' ' cos(q~-%~) 
i = l  

- 1 / 2  t t t +2q [R1R2R3cos(~l-~2-¢3) 
- R'p, R~R'3 cos (q~p, - ~¢2 - ~03) 

~ l D v  D t  
- -  -t- l.t~,p2~t~ 3 COS ( ~ 1  - -  (~p2 - -  ~ 3 )  

D v O t O v  
- -  -~, 1~t-2,~,p3 COS (~t) 1 - -  ~ 2  - -  ~ p 3 )  

+ R'plR'pEg~ cos (~p l -  ~p2- ~3) 
t t t + Rp1R2Rp3 cos (~Pp1 - ~2 - tPp3) 

O v D t  Dv } "4-,~,l,~.p2,~.p3 COS ( ~ 0 1 - - ~ 0 p 2 - - ~ 0 p 3 ) ]  . ( A 1 )  

By the same change of variable (I.A1) reduces to 
? ? ? g ? 

P(E1 E2, E~, Epl, Ep2, Ep3) 

" -  ( 2 7 7 )  - 1 / 2  exp {-  1 , t 2 ~(E1-  Epl) 

+q-U2(E~-Ep l ) (E~-E 'p2 ) (E '3 -E 'p3 ) } .  (A2) 

APPENDIX B 

For equal atoms fully resolved from one another the 
following relations hold: 

T[pq(r)] = Fq, h 

T[p2(r)] = OhFq,h = V- '  E Fq, kFq, h_k, 
k 

where T stands for 'Fourier transform of'. Then 

Fq, h=(  VOh)-' ~, Fq, kFq, h-k. (B1) 
k 

Since 

Fq, h = F h - Fp, h 

Fq, k -~- F k  -- Fp, k ( B 2 )  

Fq, h_ k = F h _  k - -  Fp,  h_k ,  

(B 1 ) becomes 

Fh = Fp, h + ( VOh)-' Y. ( F k - Fp, k) ( Fh_ k -- Fp, h_k) , 
k 

(B3) 

which is the new form of the Sayre equation. Equation 
(B3) should not be confused with results by Fan 
Hai-fu (1965) and Krabbendam & Kroon (1971) 
whose formulas modify Sayre's equation for the pres- 
ence of heavy atoms. Our equation (8) may be con- 
sidered as the probabilistic counterpart of (B3). We 
note: 

(a) (B3) strictly holds even when the known part 
of the structure contains unequal atoms. This condi- 
tion does not coincide with Sayre's condition, accord- 
ing to which all the atoms in the structure have to be 
equal; 

(b) the relations (B2) can be considered as con- 
straints for the Fq factors. Indeed the moduli and 
phases of the factors Fp and the moduli of the factors 
F are a priori known. Such constraints make (B3) 
more useful than the classical Sayre's equation when 
prior information is available. 
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Abstract 

With new probabilities, based on the Patterson func- 
tion, for the 'atomic' random variables x l , . . . ,  XN in 
P1, it is shown that an improved estimate can be 
obtained for the sign of the seminvariant E2h in P1. 
Two probability measures are considered. A method 
is also given for the case of a known Patterson vector 
of the form 2rl, giving an estimate for the sign of any 
structure factor Eh by using its first neighborhood. 

1. Introduction 

For deriving joint probability distributions of struc- 
ture factors one has used up to now two conceptually 
different approaches. One is to consider the structure 
factor 

Eh = ~ f exp(21rih, xi) (1) 
i 1 i=l 

as a function of the random variables xl, x 2 , . . . ,  xN; 
the other consists in regarding Eh as a function of 
the random variable b. The first method consists in 
letting the random variables x~, x 2 , . . . ,  xN range uni- 
formly and independently over the unit cell, which 
may be represented mathematically by [0, 1[ 3 [the se t  
of all triples (u, v, w) where 0 - u ,  v, w < l ] .  In this 
paper other probability measures are considered for 
the random variables xt, x2, • • . ,  XN based on the Pat- 
terson function. In" particular, we study the 
seminvariant E2h in P1. 

* Present address: Universit6 du Burundi, Drpartement de 
M~ithematiques, BP 2700 Bujumbura, Burundi. 

0108-7673/85/060613-05501.50 

2. The probability distribution of E2h in P1 for 
different probabilities for X l ,  X 2 ,  • • . , X N 

Several probability measures for Xa, x 2 , . . . ,  XN will 
be considered and used to determine the sign of E2h 
for its first neighborhood. In order to simplify calcula- 
tions we shall treat the case of N equal atoms for 
which the structure factor Eh is given by 

t 
Eh = 2 N  -a/2 ~ cos (2~ri.  b) 

i=l 

(ri ~ [0, 1[ 3 and t = N / 2 ) .  The function Q defined on 
[0, 1[ 3 by 

u ~ [0, 1[ 3 ~ Q(u) = ( ( E ~ -  1) exp ( - 2  7rik. U))k 
(2) 

(where ( . )k  means the average over all reciprocal- 
lattice vectors) gives 

I N 1 if u = [2ri] or u = [ -2r i ]  (1 - i-< t) 

~2N -1 i f u = [ r i - r j ] o r u = [ r i + r j ] o r  

Q ( u ) =  / U = [--ri--r;] ( l <- i,j <- t and i ~ j)  

l0 elsewhere, (3) 

where [x] for x~ •3 denotes the unktue vector in 
[0, 1[ 3, which differs from x by some vector (p, q, r), 
where p, q and r are integer numbers. 

This function Q will be used to construct several 
probability measures on the 'atomic' random vari- 
ables xi(1 -< i --- t). The simplest probability measure 
is obtained as follows. The random variables 
xl, x2, . . . ,  Xu will be taken to be independent. They 
are defined on [0, 1[ 3, equipped with its usual collec- 
tion of Borel sets, by u6 [0, l [3~xi(u)  - u  (1 -< i_< t). 
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